Risks evaluation and Failures Diagnosis for Autonomous tasks execution in Space

Alberto Finzi, Fiora Pirri, Marco Pirrone, Massimo Romano
 Dipartimento di Informatica e Sistemistica
 Università" di Roma “La Sapienza”
 Roma, Italy
 e-mail: ffinzi,pirri,pirrone,romano @dis.uniromal.it

Keywords: Basic theory of actions, Perception, Failures, Diagnosis, Probability, Geons, Situation Calculus.

ABSTRACT

We present a control system for autonomous manipulators based on a theory of actions integrated with a theory of perception and failures. The theory of actions, perception and failures is defined in the Situation Calculus, a logical language that allows the representation of dynamic domains. We assume that an autonomous agent is provided with a set of possible goals. The goals are suited to the domain and the agent abilities. Despite these abilities, an autonomous agent might fail, during the execution of a task: failures can be caused by any unexpected event like loss of power, vibrations, noise, etc. These unexpected or exogenous events can cause the agent to loose an object is carrying or to slip or to hit some payload or some other structural component. While it is impossible to avoid a failure it is still possible to minimize the cumulation of failures during the execution of a task, by suitably choosing the less risky sequence of actions among all the possible sequences that allows the robot to achieve a goal. Moreover, under certain conditions it is also possible for the robot to autonomously recover from the failure. The core of the system is a high level program controlling the on-line agent behaviour: while a goal is not achieved, it selects a task from a library of possible subplans and executes it. The task, when correctly chosen, must lead to a subgoal position. At the end of each task execution, visual perception is used to monitor the coherence between the configuration of the domain and the configuration entailed as a consequence of the execution of the task. In case of a misalignment between the predicted state and the perceived one, a diagnostic procedure is activated. In our model the divergence between external information and internal representation is justified by the execution failure of the actions specified in the task. Actions are given a probability of success and since a probability can be associated also to the sentences of the logic, an expected probability of success for each goal can be computed: a goal is, in fact, represented by a sentence of the logic. This expected probability provides a measure to compute the safety of a course of actions: a course of actions is more safe than another one if it has a higher probability of success, which implies that the goal that can be achieved by such a run has a higher expected probability. Finally the diagnosis allows the robot to reset its internal status and thus to eventually recover from the error.

1. INTRODUCTION

Managing failures and safety during the execution of tasks performed by an intelligent agent is a central issue in space operations. The reason is because the cost of recover could be very high in terms of human resources. On the other hand autonomy is not only desirable but also necessary, but with autonomy the risk of failures obviously increases. It is therefore important to think about all the measures, accompanying autonomy, necessary to face failures and to ensure a flexible safety: if errors cannot be avoided, always choose those courses of actions that minimize the probability of failures, and make it possible to recover from errors. The causes of a failure can be several, and unpredictable but, depending on the task, the effects can be predictable for the agent like loosing an object it is holding, missing a grasp or sliding. The problems we want to deal with are the following:

1. Given that failures are not avoidable, ensure that a diagnosis is always possible for the agent so that it can update its current state;
2. coordinate perception and task execution, so that the agent can autonomously verify the misalignment between what it expects and what really happened, so that it can recover from the failure;
3. provide a probability of success with goal states, so that different courses of actions can be compared and a safety measure can be established;
4. embed the above requirements in a coherent dynamical system.

We present a control system for autonomous mobile manipulators based on a theory of actions and perception. The control system deals with diagnosis of possible failures, the diagnosis permits the update of the agent state to the correct situation. The system applies to autonomous manipulators built for simple missions like manipulating and moving small payloads. The core of the system is a high level program controlling the on-line agent behavior: while a goal is not achieved, it selects a task from a library of possible subplans and executes it. The task, when correctly chosen, must lead to a subgoal position. During the task, in the hypothesis that the domain is only partially observable, the agent cannot monitor its execution. In our model each action can either fail or succeed and probability of success is associated with actions, so that a task generates a stochastic process, in which also exogenous actions are considered. The computational architecture is organized into three modules: (1) A monitor, in Prolog, which is the manipulator operating system for the purpose of scheduling goals and directing calls to Golog, a high level programming language, for choosing tasks from a tasks library. (2) A local planner that expands a Golog task – a sequence of actions – into a sequence of commands to the motors, according to the existence of a free-path for the manipulator and the analytic solutions to the kinematic problems. (3) A visual module that is
activated by visual sensing actions, and updates the local map of the manipulator. The computational structure operates according to the following cycle: schedule a goal, choose a task to execute, verify its executability, compute the probability of success, verify the safety of the run, even in the presence of failures, execute it, observe the state of the world modified by the execution, diagnose what happened and, if needed, update the current execution to the correct history, until the current goal is reached. The logical structure of the manipulator is formalized in the Situation Calculus [13, 19] and it is divided into an idealized, deterministic part -- the basic theory of actions -- and a component devoted to sensing, perception, and the non-deterministic effects of actions. The basic theory of actions represents the dynamics of the world assuming all agent actions are successful. The extended theory is needed both to predict possible failures and to diagnose failures at the end of a run, under a complete failure assumption that all possible failures have been specified. Observe that also safety conditions are specified in order to suitably take into account the risks of a task execution and at which stage the verification of the current state of the execution has to take place. The formalization of perception and failures that we provide allows the system to diagnose what happened and also to project what could happen in terms of probabilities of success of each possible run, in order to accept or reject a task. The vision module is a C++ program that uses the Matrox Imaging Library. This module performs an intelligent object search in the scene with a geometric and probabilistic approach. Visual perception is used only at the end of a task and perception is, thus, used to monitor the coherence between the configuration of the domain, obtained by the agent current run and the configuration entailed as a consequence of the execution of the task. In case of a misalignment between the predicted state and the perceived one, a diagnostic procedure is activated. The diagnosis allows the agent to infer the effective run executed, selecting the most likely hypothesis that explains the perception.

2. PRELIMINARIES

We consider the Situation Calculus as the core of our logic and language, and we suitably extend it to include new sorts, new symbols for its alphabet and new axioms. See [17] for a full presentation of the core logic and language. For the extension of the language to perception and probabilities we refer the reader to [5, 6]. Here we want to recall that the Situation Calculus is a first order language in which is it possible to specify the dynamics of a system and to suitably represent the laws of change of a domain. Of particular importance are the situations. Situations are histories of actions: for example gOTo(pos), dock, charge(battery), is a sequence of actions; when this sequence has a beginning, for example in the initial situation S_0, then we have an history of what an agent has done since a given state. Another important feature of the Situation Calculus is its ability to describe the dynamics of properties in a domain, as a consequence of actions execution. A property change whenever its truth value changes, for example the light is off after it has been switched off, but before this action it was on. Properties that change are called fluents, which are dynamic relations, e.g. $\text{Land}ing(alpha_2, s)$ that specify that in the situation s the object alpha 2 is landing, and for $s' = s$ we could also have $\text{Land}ing(alpha_2, s')$: in other words a property holds or not depending on the situation, i.e. on the history of actions that have or not affected the property. Other important features of the Situation Calculus are the perceptibles, i.e. those observable properties of a domain that affect only the perception of the robot and not the domain, and the stochastic actions, that is, those actions with uncertain effects.

2.1 The basic ontology

An agent, e.g. a manipulator, can execute tasks and achieve goals, autonomously, only if it is endowed with some knowledge about the domain and the laws ruling the causes and effects of actions. We call all these requirements a basic theory of actions. In general, a basic theory of actions is tailored to a specific domain the one in which a robot operates. The laws of change will be different for a robotic manipulator operating in space or for a mobile robot making the tour guide in a museum. This implies that a basic theory of actions has to incorporate very specific knowledge of a domain. On the other hand this knowledge needs not be complete, in other words, due to the dynamical structure of the logic underlying the Situation Calculus it is possible for the agent both to reason about its world even when it lacks some information and to acquire new information through perception.

Here we shall present a very simple example inspired by the exposure facilities designed for the express pallet. Our domain is that of a 7 dof robotic arm that has to manipulate payloads and to ensure their exposure for suitable experiments. We have both a simulation of the operations, that we show in Figures 1,3,4, and several implementations with small 4DOF robotic arms.

2.1.1 Descriptions

A description is needed to establish a correspondence between denotation of objects in the real world, their representation in the image and their geometric representation in a local map. For example $\text{Land}ing(\text{object}_1, S_1)$ is used to denote the name of a region in the local map. In particular we shall directly use the constant ee to denote the end effector. So for example in the initial database D_S we would have sentences of the kind:

$$\text{Payload}(x) \quad (\text{Payload}(x) \in \{x \in p_1, \ldots, x \in p_n\})$$

where x is a geometric description of the payloads in terms of our primitives categories which are the parametric geons introduced in [21].

$$\text{Land}(x) = \text{payload}(x) \quad (x = \text{object}_1, \ldots, x = \text{object}_n)$$

$$\text{EndEff(x)} = \text{payload}(x)$$

Despite descriptions are not affected by world dynamics, the position, of a landmark changes in the scene, even if the camera is fixed. However it is independent of the robotic actions. The basic ontology is defined specifying fluents and control actions; we also add exogenous actions that will play an important role in the extended part of the theory of actions, described later in the paper.

2.1.2 Fluents

$\text{On}_{(x, y, s)}$: The object x is on the object/landmark y, in situation s. To handle the projection of an object (e.g. a payload) on the map we introduce the predicate $\text{Bottom}(x, y, s)$, defined as:

$$\text{Bottom}(x, y, s) \quad \text{On}(x, y, s) \wedge \text{Land}(y)$$

$\text{Clear}(x, s)$: Object x is clear, in situation s.

$\text{Holding}(x, s)$: The end-effector is holding object x, in situation s.

2.1.3 Control Actions
moveTo(x; y): While holding object x, the robot moves it to
a reference object/landmark y.
goTo(x): The end-effector moves to reference object/landmark
x.
grasp(x): Grasp the object x.

2.1.4 Exogenous Actions
slip: The robot slips, which means that the end-effector
is no longer in the expected position.
fall(x; y): The object x falls and is no longer in its original
position.
shift(x; y): Object x shifts from its current position to
position y.

These are all the possible control and exogenous actions, and
their effects are those explicitly mentioned. Observe that this
last clause is a completeness assumption for failure: any change
in the domain is due to the effect of either a control action or
an exogenous action; nothing else affects the world.

2.1.5 Successor State Axioms
An example of a successor state axiom for the basic
ontology is the following:

\(\text{on}(x; y, do(a; s)) \downarrow a = \text{moveTo}(x; y) \downarrow a = \text{shift}(x; y) \downarrow
\)
\(\text{on}(x; y, s) \uparrow (a = \text{grasp}(x) \wedge a = \text{fall}(x) \wedge a = \text{slip}) \uparrow
\)
\(z.(z = y \wedge (a = \text{shift}(x; z) \wedge a = \text{moveTo}(x; z))) \).

3. BEYOND THE BASIC ONTOLOGY

3.1 A model for perception
For a detailed presentation of perception in the Situation
Calculus we refer the reader to [16]. In the framework of
the robotic manipulators, we manage the perception of the scene
by a single sensing action taking as arguments the primitive
perceptibles, which for the express pallet world are isLand,
isPayLoad; isEndEff as follows:

\(\text{observeScene}(\text{isPayLoad}(x), \ldots \text{isP}(x; p_1, \ldots, p_n)) \)

Here each isP is a primitive perceptible and the \(p_r \)'s are
outcomes of visual perception: \(p_r = 1 \) means that the perceived
property, denoted by the perceptible, holds in the scene, and 0
that it does not. In this framework the scene is a fluent taking as
argument a primitive perceptible and a situation. The following
successor state axioms account for the primitive perceptible
explicit definition and description with respect to the scene:

\(\text{Scene}(\text{isPayLoad}(x), \ldots \text{pr}(x; p_1, \ldots, p_n)) \downarrow
\)
\(\text{observeScene}(\text{isPayLoad}(x), \ldots \text{pr}(x; p_1, \ldots, p_n) \uparrow
\)
\((x = p_1 \wedge \ldots \wedge x = p_n \wedge \text{pr}_r = 1) \uparrow
\)
\(\text{Descr}(\text{isPayLoad}(x), \ldots \text{Scene}(\text{isPayLoad}(x), \ldots \text{pr}(x; p_1, \ldots, p_n))) \)

Here \(\text{Descr}(\text{isPayLoad}(x)) \) is a suitable description of a pay-
load, e.g. containing information about the dimension, shape,
weight etc. In this framework, given that a single sensing ac-
tion over the primitive perceptibles is defined, the percepts are
used for constructing the relations among primitive perceptibles
and for recording the perceptible and their outcomes at each
situation:

\(\text{Percept}(\text{isOn}(x; y), \ldots \text{pr}(x; p_r, s)) \downarrow
\)
\((p_r = 1 \uparrow
\)
\(\text{Scene}(\text{isPayLoad}(x), \ldots \text{pr}(x; p_1, \ldots, p_n) \uparrow
\)
\(\text{isLand}(y), s) \uparrow \text{Descr}(\text{isOn}(x; y)) \uparrow
\)
\((p_r = 0 \uparrow
\)
\(\text{isLand}(y), s) \uparrow \text{Descr}(\text{isOn}(x; y)) \).

Here \(\text{Descr}(\text{isOn}(x; y)) \) is a description of the relation \text{isOn}.
After an observation of the scene there might be a discrepancy
between what is perceived and what is entailed by the database:
the discrepancy will not cause a logical inconsistency because it
is recorded as, e.g. \(\text{On}(a_1; b) \) and \(\text{Percept}(\text{isOn}(a_2; b_2); 0, s) \).

These discrepancies are detected by a defined predicate
\text{Mistaken}(p_2; s), for each perceptible p, which will be used to
diagnose what the real effects of the actions performed by
the manipulator are. For an analysis of the different levels of
perception, from direct perception to selective sense perception,
to meaningful perception and how mistakes are treated, we refer
the reader to [16].

3.2 A model for failures
In the basic ontology we have defined an idealized represen-
tation of the world in which the effects of actions are exactly
those intended, i.e. actions, even exogenous actions, are deter-
ministic. However, due to various circumstances (e.g. a sudden
change in the power supply), the robot might fail in its intended
execution of an action. To address this problem, we have ex-
tended the specification of an action theory with stochastic ac-
tions and events, which we briefly present here.

A stochastic action is a pair \(\text{av}(a; v) \) with \(v(a) \) taking values
in the outcome space \(v(a) = f_0, 1g \), where 0 means that
a failed and 1 that it succeeded. Given a sequence of actions,
this sequence expands to a tree of events due to all the possible
outcomes of each action. See Figure 2. To model the tree and
the probability distribution we introduce the following notion of
event.

Event. An event \(e \) is either a sequence event \(\text{seqEvent} \)
or a conditional event \(\text{condEvent} \) of sort \text{condEvent} according to
the following definitions:

sequence event:

1. \(E_0 \), the empty event.
2. \(\text{av}(a; v) \uparrow \text{w}_1 \), the event obtained as a result of executing \(a \)
 with value \(v(a) = f_0, 1g \), after the sequence event \(w \).

conditional event

3. \(\text{av}(a; v) \uparrow \text{w}_1 \), the event obtained as a result of executing \(a \)
 with value \(v(a) = f_0, 1g \), conditioned on the sequence event \(w \).
3.3 Preconditions of stochastic actions and conditional probabilities

Given a sequence of stochastic actions \(w = h v(1), \ldots, h v(n), n \in E_0 \), a stochastic action \(st = h v(a), a \) could be executed with success in \(w \) if suitable conditions are satisfied. The following schema captures this fact:

\[
\text{Could}(h l, a, w) \quad \text{hl,ai}(1, a; W)
\]

where specifies the conditions for executing the action \(a \) with outcome 1. The above axiom states which preconditions have to be satisfied, at a given sequence of stochastic actions \(w \), for the action to be executable with success. For example, if the robot intended to go to a given position and it slipped, it follows that the measure of the fluent \(O_n(e, e_1) \) cannot be 1 and the action \(\text{grasp}(a) \), if \(a \) is on landmark \(3 \), cannot be executed with outcome 1. The above preconditions are also needed to define the probability of success of a stochastic action. We show, in the sequel how we define the axioms for the preconditions of stochastic actions, in the express pallet world, in which initial information might have been acquired through perception. Consider the control and exogenous actions given in paragraph 2.1.3 and 2.1.4.

\[
\text{grasp}(X), \text{goto}(X), \text{moveTo}(x; y), \text{fail}(X), \text{slip}, \text{shift}(x; y)
\]

The preconditions for \(\text{grasp} \) and for the exogenous action \(\text{fail} \) are:

\[
\begin{align*}
\text{Could}(h l, \text{grasp}(X); i, e) & : P(a; i; e) \land C_{\text{load}}(x; e) = 1 \land O_n(e, e_1) = 1 \land 8: P(a; i; e) \land C_{\text{load}}(x; e) = 0, \\
\text{Could}(h l, \text{fail}(X); i, e) & : st = h0, \text{grasp}(X); i, e \land \\
& 9: y; st = h0, \text{moveTo}(x; y)
\end{align*}
\]

Observe that the preconditions for the exogenous actions to be successfully executed depend also on the failure of previous control actions. So, for example, the end-effector can slip just in case either the action \(\text{goto} \) or the action \(\text{moveTo} \) just failed. Therefore the conditional probability of the exogenous action are conditioned on random effect of stochastic actions. The following is an example of the conditional probabilities of the exogenous actions \(\text{fail}(X) \), conditioned on the failure of a stochastic action:

\[
\begin{align*}
P(h l, \text{fail}(X); i, e) & : \\
P(h l, \text{fail}(X); i, e) & : \text{Could}(h l, \text{fail}(X); i, e) \land \\
& (st = h0, \text{grasp}(X); i, e) \land p = 0.6, \\
& (st = h0, \text{moveTo}(x; y)) \land p = 0.4, \\
& p = 0 \land \text{Could}(h l, \text{fail}(X); i, e), e).
\end{align*}
\]

Observe that by the axioms for \(P \) we have for each of the above stochastic actions also a conditional probability for failure:

\[
P(h l, a; e) = 1 \quad P(h l, a; e)
\]

3.4 Updating the knowledge base and diagnosing failures

At the end of the execution of a task the action \(\text{observeScene} \) is performed and therefore for each property in the world there will be a perceptible with outcome 0 or 1. For example, if \(a \) is on \(b \), then the robot will infer \(\text{Percept}(\text{isOn}(a; b), 0) \).
where \(\pi \) is the current situation after the observation of the scene. Perception, might disagree with what the agent's database entails. For example if the agent did the action \(\text{moveTo}(b_1, b_3) \) but it failed to pick up \(b \) then the agent database would entail \(\Omega(b_1, b_3) \), and so contradict the result of perception. However, on the stochastic tree, there is an event telling the true story, namely, that the agent failed to grasp \(b \). To find this event we introduce the notion of likelihood, that will allow us to select the most likely event that happened and that can explain the current perception.

3.4.1 Likelihood

Let \(\varepsilon \) be a sequence of actions. Let \(\omega = \text{sta}_1 \cdot \text{sta}_2 \cdots \text{sta}_k \). Let \(E_0 \) be a leaf (tree \(\langle \rangle \)) be a final sequence of stochastic actions. \[
\text{likelihood}(\omega) = 1 \quad \text{def} \quad \mathbf{P}(\omega) = 0^\omega \\
8x: y: \text{payload}(x) \land \text{payload}(y) \land \text{Land}(y) \land \mathbf{P}(\text{percept}(\text{isOn}(x, y), 1, \langle \rangle), \Omega(x, y, W)) \\
8s: \langle \text{percept}(\text{isHolding}(x), 1, \langle \rangle), \text{Holding}(x, W) \rangle \land \text{percept}(\text{isClear}(x), 1, \langle \rangle), \text{Clear}(x, W) \rangle \\
\text{likelihood}(\omega) < \text{likelihood}(\omega') \land \mathbf{P}(\omega) < \mathbf{P}(\omega').
\]

Observe that the fluents above take as argument a sequence-event, as they are belief (see [6] for more details). We define, now, a preference relation \(\prec \) between stochastic sequences as follows:

\[
\omega \prec \omega' \quad \text{def} \quad \text{likelihood}(\omega) < \text{likelihood}(\omega') \land \mathbf{P}(\omega) < \mathbf{P}(\omega').
\]

Note that \(\prec \) induces a partial order. Consider the set of \(\prec \) maximal elements. We can then define a heuristic to choose the most likely stochastic situation. For this simple domain we have chosen to prefer a sequence \(\omega \) to a sequence \(\omega' \) if the number of occurrences of exogenous actions in \(\omega \) is less than in \(\omega' \) and the sequence of \(0 \)'s in the outcomes of \(\omega \) are less that in \(\omega' \). These preferences are reasonable and, in general, enough to identify a unique preferred sequence \(\omega \) of stochastic actions in the set of \(\prec \) maximal elements.

Once the most likely sequence \(\omega \) is computed, according to a preference criterion, then the sequence \(\omega \) is a correct sequence of stochastic control and exogenous actions that could have been “effectively” executed — under a complete failure hypothesis, i.e. all the possible failures and exogenous actions have been represented.

Let \(\varepsilon \) be a sequence of actions, let \(\omega_{\text{max}} \) be the sequence of stochastic actions satisfying the maximum likelihood hypothesis according to the preference criterion and the heuristic. Let \(\varepsilon' = \text{sit}(\omega_{\text{max}}) \). There exists a sequence \(\varepsilon'' \), which can be obtained from \(\varepsilon' \), such that \(\varepsilon'' \) explains the perception in \(\varepsilon' \).

Theorem 1. Let \(\varepsilon \) be a sequence of stochastic actions satisfying the maximal likelihood established by criteria in \(\varepsilon' \). Then there exists a sequence \(\varepsilon'' \) and a function \(\text{trans} \) such that:

\[
\exists \varepsilon'' = \text{sit}(\omega_{\text{max}}) \quad \text{trans}(\varepsilon'') = \varepsilon' \\
8x: \mathbf{P}(\text{percept}(\text{isOn}(x, 1, \langle \rangle), \Omega(x, 1, \langle \rangle) \land \mathbf{P}(\varepsilon''))
\]

Here \(\text{trans} \) is a function eliminating from the event \(\varepsilon \) all the stochastic actions having outcome 0.

3.5 Expected Probability and Safety

In [5] we have proposed a formal methodology to compute the probability of sentences in the initial situation \(D_{\text{s0}} \), under the constraint that the domain of world entities has a fixed cardinality. Now, given a sequence of actions \(\varepsilon \), where \(\varepsilon \) can be a sequence like \(\text{moveTo}(p, o, a, d), \text{insertGripper}, \text{ife}(p, o, a, d), \text{moveTo}(p, o, a, d) \), and a goal \(G \) that requires the sequence \(\varepsilon \) to be achieved, for example \(G \) could be \(\text{On}(p, o, a, d) \), we want to determine the probability of \(G \), given that each action succeed with a given probability. To this end we need to combine the logical probability on sentences and the event probability defined on stochastic actions to get a third probability that accounts for both incomplete information and possible failures of actions during execution. To capture these ideas we introduce the notion of *Expected Probability*. Let \(E_{\text{set}}(\varepsilon'') = e_0, e_1, e_2; \text{leaves}(\varepsilon''), \text{trans}(e_0) = \varepsilon' \). Let \(T(\varepsilon) = x; \text{trans}(e_0) = x, e_2; \text{leaves}(\varepsilon)g \), and let \(R \) be the regression operator, see [7].

Definition 1 ([Expected Probability in \(S_{\text{s0}} \)]. Let \(\varepsilon \) and \(\varepsilon'' \) be sentences uniform in \(\varepsilon \). The expected probability, in \(S_{\text{s0}} \), of \(\varepsilon \), given evidence \(E \), is:

\[
\mathbf{E}X \varepsilon = \mathbf{E}X \varepsilon'
\]

The above defined expected probability allows us to compare two sequences of actions and decide which one is safer:

Definition 2 ([Safety]. Let \(\varepsilon_1 \) and \(\varepsilon_2 \) be two sentence uniform, respectively, in \(\varepsilon_1 \) and \(\varepsilon_2 \). Let \(s_{\text{safe}} \) be a ordering:

\[
\varepsilon_1 \preceq s_{\text{safe}} \varepsilon_2 \quad \text{iff} \quad \mathbf{E}X \varepsilon_1 \mathbf{E}X \varepsilon_2
\]

The notion of Safety is meaningful because it allows to compare two runs and decide which one is more reliable, just from the point of view of what the robot knows in the initial situation and on the probability of success of each action mentioned in the run. Given a set of goals that the robot has to achieve, it is possible to assign a reinforce to all those states in which the goal is satisfied, according to the probability of success and the safety of the sequence leading to such a state. The reinforce will make it possible to define suitable policies, i.e. courses of actions for each goal, that the robot should take, in order to achieve all the goals that have been scheduled.

Observe, however, that a robot cannot backtrack from a chosen Goal situation, therefore in maximizing the reward from all the goal states it has to take into consideration the fact that the next goal can be reachable from the current situation. We are still developing this approach, and in our implementation the choice of a task is still non-deterministic.

Figure 4: Concluding the task.
4. IMPLEMENTATION

4.1 Perception

The role of perception is to correctly instantiate the sensing action observeScene and to update the local map.

The perceptual system is composed of a cognitive part, that manages reasoning about perception and perceptibles, a recognition part and an analytic part. The core of the system is formed by the concept of parametric Geons [21]. Parametric Geons are seven volumetric shapes, obtained by specifying the shape parameters in a superquadrics equation and applying tapering and bending deformations, see Figure 5.

![Figure 5: Parametric Geons](image)

The cognitive part is formalized in the theory of actions via Descriptions and axioms for perceptibles: for each category of objects or property or relation which is expected to be observed in the domain, a suitable sentence states the conditions under which it can be sensed and acquired at the cognitive level, in order to reason about it. The recognition part is formalized via a Bayesian network in which 3D geometric primitives, i.e. parametric geons [21], are inferred using evidence available from 2D image features and arcs of lines. The Bayesian Network is also used, together with the cognitive level, to infer a plausible reconstruction of an object in the scene. At the lower, analytical level, a neural network elaborates the arc segments obtained by the Bayesian Network. In Figure 6 some of the nodes of the Bayesian Network are displayed, without the conditional tables and the connections: at the lower levels are the categorizations obtained by suitably elaborating the neural network output. Bayesian Networks have already been used in vision, by Jensen et al [4] for context based modeling and interpretation. In particular Fairwood and Barreau [11] proposed the use of a Bayesian network to infer 3D geometric primitives (geons) using evidence available from 2D image feature detectors. Moreover Sarkar and Boyer [20] developed the Perceptual Inference Network (PIN), an extension of the Bayesian network, that was used to organize knowledge about low-level features, such as edges and corners, to reason about higher level features.

We model the scene with a hierarchical geometric model whose components are the connections among the entities in the scene and their properties. Entities are instantiated with features, e.g. color, orientation w.r.t. the reference frame, etc. The known entities are represented in a normalized form.

The vision module is a C++ program realized in the ALCOR laboratory using the Matrox Imaging Library. This module performs an intelligent object search in the scene with a geometric and probabilistic approach. It executes the following tasks: image acquisition, noise reduction, scene segmentation, edge detection, vertex recognition and 3D reconstruction. We have been using a couple of ultra small CCD color video cameras XC-999, by RWI, with high resolution and definition.

4.2 High Level Control

The high level control is managed by a Golog programs. Golog [12] is a situation-calculus based logic programming language suitable for the high level agent control. This language employs the primitive actions specified in the knowledge base, and provides the following standard, and not so standard, Algol-like control structures:

1. Sequence .
2. Test action "?
5. While loop
6. Loops and Procedures, including recursion

Golog’s semantics is specified by means of a macro $D(x, y, z)$, where x is a program, and ‘$’ and ‘$’ are situation terms. The macro abbreviates a formula ‘$’ of the Situation Calculus, which interprets the program as a sequence of actions that should be executed to transit from ‘$’ to ‘$’. Therefore, each program execution corresponds to a Situation Calculus formula. This correspondence is defined inductively as follows:

- primitive action $D(x, y, z)$
- test $D(x, y, z)$
- sequence $D(x, y, z)$
- nondet: choice $D(x, y, z)$
- nondet: choice of arg $D(x, y, z)$

Both procedure calls and blocks with local procedure declarations can be defined; for details see [12].

The high level primitive actions and the non deterministic constructs allow for the definition of plan schemas suitable for the description of agent’s behaviors. To adapt a Golog execution to the space of events, we extend Golog with the following new construct:

$$D(x, y, z) = E \backslash \{x, y, z\} = X \wedge 8sta(e^n) \wedge \text{outcome}(sta, e^n, sta) = 1 \wedge D(x, y, z) \wedge \text{sit}(e^n) = z'. $$

where $\text{sit}(e^n)$ and $\text{outcome}(sta, e^n, sta)$ are the functions defined in Section ?? To connect the high level executability of
a program to the low level executability of the primitive operations of the manipulator we introduce the following macro.

\[\text{DoG} \{ \text{prog}_1; \text{prog}_2 \} \triangleq \text{Do} \{ e_x \text{prog}_2; \text{prog}_1 \} \wedge \text{exec}(e_x \cdot \text{prog}_2) \]

\[\text{exec}(e_x \cdot \text{prog}_2) = \begin{cases} \text{true} & \text{if} \ x \in \text{prog}_2 \\
\text{false} & \text{otherwise} \end{cases} \]

\[\text{PossG}(e_x \cdot \text{prog}_2) \triangleq \text{PossG}(e_x \cdot \text{prog}_2) \wedge \text{findPath}(e_x \cdot \text{prog}_2) \]

Observe that \text{exec}(e_x \cdot \text{prog}_2) states that the trace of the program is *low level executable*, \text{PossG} is a guarded \text{Poss}, and \text{findPath} represents a guard for the action preconditions verifying the low level executability of the action \(\text{a} \).

The Golog variant that we have just presented allows for the implementation of the high level controller. The monitor, in fact, is based on the following Golog procedures.

proc \(\text{chooseTask} \)

\(\text{goal} \wedge \text{goal}^\prime; \neg \text{(X|\text{task}(X), \text{observeScene})} \)

endProc

proc \(\text{verify} (s) \); \text{call} [\text{verify}(s)]; \text{endProc} \)

The procedure \text{chooseTask} consists of a non deterministic choice of a task \(\text{task}(X) \) followed by an observation of the scene. A task represents a specific sequence of actions that the agent intends to execute. The task is chosen just in case it is executable at all the layers of the agent architecture; a task fails if its global or local expansion fails. After the blind execution of the task the \text{observeScene} action gathers the perceptual information about the current *external* state of the world. The procedure \text{verify}(s) is then called to get, among all the possible ones, the most plausible execution that can explain the observed state of the world. This procedure consists of a procedure call in the space of the events employing the construct \text{call}. At the end of the procedure a new final situation is reached; this situation explains what has been perceived. The following tasks library accounts for all the possible behaviors of the agent at its Express Pallet workspace.

proc \(\text{task}(1) \)

\(\text{(X|\text{task}(X), \text{observeScene})} \)

endProc

proc \(\text{task}(2) \)

\(\text{(X|\text{task}(X), \text{observeScene})} \)

endProc

proc \(\text{task}(3) \)

\(\text{(X|\text{task}(X), \text{observeScene})} \)

endProc

\(\text{onPallet}(X) \wedge \text{goodTower}(Y) \wedge \text{sameColor}(X;Y) \wedge \text{goTo}(X) \wedge \text{grasp}(X) \wedge \text{moveTo}(X;Y) \wedge \text{goTo}(0) \)

The procedure \text{verify} amounts to a nondeterministic search, in the space of the events, for that event satisfying a maximum likelihood value, which represents the most plausible explanation. Observe that, as noted above, a set of preference measures is used until the likelihood converges to a single event state. A Golog procedure must be translated into suitable low level primitive operations for the functional architecture of the manipulator, before the execution; therefore it is necessary to define a monitor, the robot operating system, guiding both compilation and execution of Golog programs. This monitor program cycles between first compiling and executing the procedure \text{chooseTask}, and compiling and executing the procedure \text{verify}(s) until the \text{goal} is achieved. Golog programs are translated into the low level primitive operations, evaluating the formula \(\text{DoG}(\text{s}; \text{prog}) \) checking low level executability. A monitor cycle works in the following way: if the start situation is a goal situation then the monitor stops and it schedules another goal. Otherwise, a \text{chooseTask} is compiled and translated into the local level for evaluation and execution. After the execution, the \text{verify} procedure is performed to get the situation that explains the perceived state. The monitor is implemented as a Prolog program.

5. DISCUSSION

In this paper we have presented a control system for autonomous mobile manipulators managing failures of actions and perception. In our approach, actions are considered as non-deterministic and stochastic; for each action, the probability of success and failure is given. To manage failure, we have adopted a probabilistic approach that is similar to that proposed by Bacchus, Halpern and Levesque in [1], where a model \(\text{s} \) is presented for reasoning about an agent’s probabilistic degree of belief. In that framework, noisy sensors and effectors are modeled using stochastic actions that affect the beliefs of the agent. In contrast to our model, where the sensors are sources of “truth” used to evaluate the beliefs of the agent, in their approach a direct comparison with the “real world” is not considered because all the reasoning resides in the “mind” of the agent. The problem of combining actions and probabilities has been considered in the important work of Poole [18] that presents a way to combine decision theory, situation calculus and conditional plans. Unlike [1]’s approach, Poole’s differs from ours in many respects. The main difference is that in our frame-
work, a probability distribution is assigned to the actions (that may succeed or fail) while in Poole’s approach the probability is associated with the state. Reiter [19] also considers the representation of stochastic actions in an action theory, by decomposing a non-deterministic action into deterministic components selected probabilistically by nature. He does not give an explicit formalization for probabilities. Another interesting probabilistic model for dynamic domains can be found in [14, 15] in the context of reactive planning [2]. This probabilistic model differs from ours in several respects. The ontology underlying the dynamics is temporal. Furthermore the probability of events is context dependent, while we consider that probabilities depend on histories of stochastic actions.

A probabilistic representation is also employed by RHINO [3], but at the lower level. This representation is used for the sensor model, which can be inaccurate and incomplete, while we assume that visual perception is reliable and complete, for the domain at hand. The crucial difference is in the fact that we are dealing with small mobile manipulators, not robots. Therefore, our environment might be complex – which could even be more informative for localization – but is quite static and limited: this also allows the manipulator to have an external perspective from which an objective and total view of the environment can be got. At the task level, RHINO employs high level Golog programs executed by GOLEX [9]. Our solution is different; we have a high level execution monitor that manages compilation and execution of Golog programs and the execution is monitored after a sequence of actions, while GOLEX monitors after each action. In our framework failures and perception are represented and treated at the logical level, while in RHINO they are treated dynamically by the monitor at the lower level. In this respect, the novelty of our approach is in our uniform formal framework, allowing us to infer explanations for failures; this explanation is the recovered situation. A high level programming approach is a central issue also for Funge [7] that addresses the domain of computer games introducing cognitive modeling for autonomous characters animation. Here failures are managed at the high level using sensing actions (implemented using interval-valued-epistemic-fluents [8]). Sensing action outcomes are used to test action effects and for replanning or recovering. In our system, perceptual information is used simply to explain failures, after which the monitor restarts from a plausible state of the world obtained by the explained situation. Failure recovery is an important topic in the ROUGE architecture [10]. In this framework, monitoring is performed after each action execution and perception allows the system to adapt to its environment, making relevant planning decisions. Also here failures are treated dynamically, detecting and compensating for them at run time. A model for failures is not employed; failure detection directly induces an update in the domain knowledge, and that initiates the replanning activity.

Acknowledgment

The paper describes research done at the ALCOR laboratory. Support for the laboratory’s research is provided in part by the ASI (Italian Space Agency) project PEGASO (PErcept Golog for Autonomous agents in Space station Operations).

6. REFERENCES

